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Ideal-MHD eigenvalue analysis of 1D and 2D spectral
elements offers an improved approach to primitive-variable
extended-MHD computation.



Introduction: NIMROD’s C0 spectral-element implementation
is formulated to allow dissipation for each physical field.
• Like conventional thermal-conduction and structural-mechanics
applications, second-order derivatives lead to mathematical ‘energy’
increasing as spatial scales decrease.

• Second-order terms get integrated by parts.
• In 1D, for example:

• Continuous functions are necessary and sufficient (in the sense that
greater continuity is not required).

• First-order spatial derivatives do not provide a coercive energy.  The
following single-field formulation does not bound fine-scale oscillations.
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• The extended-MHD dilemma is that physical dissipation is important but
small, and there are sources of energy at small scales.



Local interchange drives small spatial scales, and the physical
bending energy is critical.

• With local MHD interchange, the physically stabilizing contribution is
singular mathematically, and the drive is local.  In normalized reduced
ideal MHD:
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stabilizing bending from the singularinertia
destabilizing interchange

Φ is the streamfunction, x is flux-normal distance from the
resonance, and ω is frequency.
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• Analytically, all eigenvalues σ of                     for oscillatory solutions
satisfy σ > 1/4.

• Ds > 1/4 allows              , i.e. instability.
• In extended-MHD equations, bending is represented by first-order
derivatives in separate equations.! 
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With non-reduced, primitive-variable equations, several
numerical operations have to work well together at the
limit of resolution to produce the stabilizing effect.
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• A relatively simple example is compressible g-mode analysis with mass
density increasing in y, supported by JzBx.

Substitute continuity into y-
comp of momentum eqn.A in numerator is from B⋅∇b & B⋅∇ξ.

Denominator & y-derivs are from eliminating ∇⋅ξ with total
pressure and different comps of momentum equation.

• Numerical response to divergence of flow at small scales is important.



NIMROD’s standard spectral-element representation with
diffusive ∇⋅B control and equal-order V, B, and p expansions
converges from the unstable side.
• Test case is m=4, k=-1.78 Suydam mode at rs=0.371 and Ds(rs)=0.443.

• Expansions with B having larger polynomial degree than other fields is a
generalization of the XTOR approach. [Lütjens and Luciani, CPC 95]
• However, just reducing the polynomial degree for V admits numerical 0-frequency
modes at mesh scales that accumulate in nonlinear computations.

NIMROD with pd(V) reduced also
converges from stable side.CYL_SPEC 1D eigenvalue results

compare different expansions.



Improvements based on 1D Analysis: First, use vector/scalar
combinations that are sensitive to divergence on all scales.
• Arranging all contributions to ∇⋅V to be in the same space as p ensures
sensitivity to divergence.

• With q* being the test function for p, the integrated ∇⋅V term is
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• If the expansion for rVr is one order greater than those for Vθ, rVz, and
q* with a discontinuous expansion for q* (and p), the pressure equation
is sensitive to ∇⋅V at all scales.
• All of these JV⋅∇ui components can be continuous.

• Hyperbolic divergence control for B with an auxiliary scalar φ is analogous
to neutral-fluid acoustics (p,V) and avoids artificial resistive diffusion.
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Second, include a numerical term to assist the physical
bending energy.

• Degtyarev and Medvedev (CPC 43) proposes and analyzes a numerical
penalty energy for low-order hybrid finite elements.

• Hybrids use more than one expansion for the same physical quantity.
• They are accurate, but individual tent functions can generate
numerically growing modes at Ds<1/4.

• Their ‘auxiliary’ eigenvalue problem demonstrates numerical bending
responses.
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In the appropriate Hilbert space,
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Their numerical penalty compensates the hybrid shortcomings.

• Degtyarev applies the following relation for piecewise linear expansion

to show that the numerical form of the auxiliary problem is
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where α and β depend on the hybrid formulation,
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• Adding a numerical penalty energy                         to               can be

used to compensate destabilization in hybrid formulations with Δ<0.
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and                             is sufficient to avoid numerical destabilization.
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The numerical penalty energy can be adapted to our first-
order-in-time equations.

• Including numerical terms with second-order spatial derivatives would
amount to damping, which we would like to avoid.
• A numerical response to parallel vorticity can be ensured with another
scalar:
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• Combining and incorporating the penalty in the reduced-MHD
streamfunction equation indicates its effect:

• If the λ-expansion in each element has just last orthogonal polynomial of
the expansion for velocity, it only penalizes oscillation at the smallest
spatial scales of a given mesh.



1D eigenvalue results for m=1 waves in a uniform-B, β=Γ=1
cylinder show that the new JA⋅∇ui representation avoids
spectral pollution.

This linear-scale plot shows critical low-
frequency behavior.

The ‘XLZ’ results are computed with
global Chebyshev polynomials and are
accurate.

• The reduced-V expansion has zero-frequency modes and spectral
pollution.
• Modes of the new JA⋅∇ui representation are close to the XLZ results.



The penalty adds one 0-frequency mode per element to the
JA⋅∇ui representation.
• Unlike results with the reduced-V representation, these modes are
essentially orthogonal to the physical fields.

Physical-field components of a 0-
frequency mode with reduced-V are O(1).

0-frequency modes with the new
representation are essentially λ-only.
[Penalty equation is insensitive to ∇|| λ.]

• Nonlinear terms in extended-MHD computation will not project onto the
0-frequency modes in the new representation. [Recall                              .]
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Results from a physically stable Suydam test, run with
hyperbolic ∇⋅B control, show no numerical destabilization with
either reduced-V or with JA⋅∇ui + penalty.
• This test case has β=14%, m=4, k=-1.5, rs=0.507 and Ds(rs)=0.200.
• Results with reduced-V and JA⋅∇ui+penalty are not plotted (γ=0).

• The red-gradient and yellow-delta traces show that neither JA⋅∇ui alone
nor the penalty alone is sufficient.
• The representation of the open-rectangle trace is analogous to FE
application to Stokes flow.



A physically unstable case shows that JA⋅∇ui + penalty
converges to the Suydam mode when the λ-representation is
just the largest Legendre polynomial.
• This test case has m=4, k=-1.78, rs=0.371 and Ds(rs)=0.443.

• If the λ-representation is complete (not just last polynomial), the JA⋅∇ui
expansion with the same                    does not reproduce the physical mode.

The new method has no growing modes
with 20 elements.

Components of the unstable mode from the
80-element, JA⋅∇ui + penalty computation.
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Summarizing properties and 1D results for the
JA⋅∇ui + penalty method …

•  Vector components are continuous, which allows dissipation in
extended-MHD computation.

• Dissipation for scalars will need flux vectors, but all scalars are
eliminated from matrices prior to external linear solves.

• The only 0-frequency modes are essentially λ-only (1 per element).

• Physically stable cases show no numerical destabilization.

• Physically unstable cases converge from the stable side.

• Overstable modes have not been produced any of the tests.

• Penalizing just the highest-order polynomial implies that results are not
critically sensitive to the choice of the      coefficient.
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Progress on 2D analysis: Many requirements for a 2D
spectral-element implementation of the new method have
been developed.
• The first step is recognizing the different nodal meshes in an element.

• This sketch of a lowest-order biquadratic/bilinear element shows basis
vectors at their node locations.

• Circles are locations of continuous perpendicular components (          ).
• Diamonds are nodes of scalars (discontinuous nodal), or scalars may
have modal expansions that have no nodes.
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Generalizing the method from 1D, physical vectors are
continuous across element borders (approximately, at least).

• Along the common edge between adjacent elements, each of
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are unique and may be used to relate the native JA⋅∇ui components.

• With curved elements, there will be high-order discontinuities between
node locations.

• Indirect addressing between element degrees of freedom (DOF) and
global DOF simplifies matrix construction, even with structured
collections of elements.

• Unstructured blocks of quadrilaterals are tractable.



NIMEIG is an implementation to test the new 2D spectral-el. /
1D Fourier bases prior to time-dependent computation.
• Mesh generation for structured arrangements of quadrilaterals has
been developed.

• Data structures and mathematical operators have been developed for
the new vector expansion and for continuous and discontinuous scalars.

• A routine to map element DOF to global algebraic-system (matrix)
components has been implemented.

• Simplified PDE systems have been implemented for benchmarking:

• Second-order in time scalar wave equation (one dependent field).

• First-order acoustic wave equation (p, V).

• First-order ideal MHD with uniform background B.

• Like CYL_SPEC, NIMEIG uses LAPACK to solve the eigenmode
problems.



Initial results from the uniform-B implementation indicate the
state of development.
• Computations are in a periodic cylinder with a=1, Lz=2π/7, β=Γ=1.
• The 2D mesh is used for the r-z plane and m=1.  (4×2, poly. deg.=3/2)

p Vr Bz

The second k=0 fast mode has ωanalytic=6.529.  NIMEIG: ω=6.528.

p Vz Br

The fastest k=7 slow mode has ωanalytic=4.812. NIMEIG: ω=4.845.



Benchmarking NIMEIG spectra and checking for numerical
modes is beginning.

Comparison of two m=1 CYL_SPEC
spectra (k=0 and k=7) and two m=1
NIMEIG spectra (all k): 2×1, degree 6/5;
and 4×2, degree 3/2.
Arrows indicate modes shown on
previous slide.

Spectra from NIMEIG have a lot of
information.

• All k represented by a mesh /
element choice are included.

• Identifying spectral pollution is
much more difficult.

• Segregation of modes by a
transform in z would help.

• The periodic system admits correct
0-frequency modes.

• With high-order finite elements, the
same physical mode shifted in phase
by less than kΔz/2 produces slightly
different numerical eigenvalues.



Next steps with NIMEIG include …

• Checking for unphysical 0-frequency modes and spectral pollution in
uniform-B conditions

• Post-processing to separate different k-values is needed

• Incorporating the complete ideal-MHD system for nontrivial equilibria
and the parallel-vorticity penalty equation

• Completing the element-to-global matrix relations for changes in basis
vectors between adjacent elements

• Coupling to SCALAPACK or other parallel eigenvalue solvers for larger
systems

• Technology transfer to NIMROD if or when results are sufficiently
promising



Conclusions
• Avoiding numerical ideal-MHD destabilization with spectral
elements requires attention to flow-divergence and bending.

• 1D eigenmode analysis (CYL_SPEC) shows no numerical
destabilization from the new mixed-degree JA⋅∇ui expansion with
parallel-vorticity penalty and hyperbolic ∇⋅B control.

• A number of other methods including reduced continuous V,
discontinuous lower-order scalars, and finite-element
“stabilization” methods have not avoided numerical
destabilization without introducing 0-frequency modes.

• NIMEIG is being developed for testing 2D elements for NIMROD
and may become a production eigenmode solver.





CYL_SPEC is being used to investigate many possible
expansions and formulations.
• 1D cylindrical geometry with                              is a compromise
between non-trivial geometry and rapid development.
• Run-time parameters are used to select basis functions.

• Basis functions in r may be continuous and discontinuous spectral
elements of arbitrary polynomial degree.
• Basis vectors are orthogonal, and the two for the θ-z plane may
rotate in r to follow B0:                     .

• Changing formulations requires minimal coding.
• Three configurations are considered: 1) uniform Bz to check stable
waves, 2&3) a peaked-pressure profile where Ds decreases
monotonically in radius, and m=4 is stable/unstable depending on kz.

• Modes resonant outside r = 0.466 are stable.
• For kz=-1.5, rs=0.507, and Ds=0.200; for kz=-1.78, rs=0.371, and Ds=0.443.
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